top of page

 

7. Avalanche Transistors

The following links are in this section:

A - Avalanche transistor related papers

J - Jim Williams Application Notes, Linear Technology Corp

R - TRansistor selection criteria for avalanche

V - AValanche transistor related Websites

 

Due to the prevalence of broken links, copies of documents (blue) are provided where possible.

The LHC project Q-switch pockels cell drivers use avalanche transistors.

There are many papers (several listed below) on the web about avalanche drivers and many ordinary transistors have been investigated for suitability. For a pockels driver requiring something in the order of a 3.4kV λ/4 pulse, the favoured choice is usually either a string of expensive ZTX415 native avalanche transistors, or hand picked cheap ordinary 2N5551 transistors.

I collated the table below from all web sources I could find in 2016; each is referenced below the table, together with my rationale for selecting suitable transistors.

I decided to test a few of my own ordinary transistors to better understand the process of selection and the best choice for my application, details of which are below. I tested transistors lying around in my parts box as well as a few bought very cheaply from eBay China: 2N5551 TO-92 & SMD $2 for 100.
I determined the breakdown voltage with the aid of a Tektronix 577 curve tracer, see bottom of this page for further details.

It is important to recognise parts from one manufacturer very likely will not behave the same as from another. Very few papers acknowledge this; A7 is a very welcome exception.  

I found [A7] long after I had run my own tests which suggested the BF392 and ubiquitous 2N5551 were good candidates for avalanche use, but I did not know the manufacturers. Once I had read [A7] I discarded the BF392 partly because it is rated for a lower frequency but mainly because I had few in stock compared to plentiful 2N5551s; this and not being a commercial venture exempted the need for a known manufacturer. Like many others I settled for the 2N5551. My only advancement over [A7] is this device is now available in an SMD offering lower inductance and capacitance, and that may be my final choice. [E42]: Semiconductor SMD coding index 2007 (and link to online readable 2014 coding index).

I found 1980 paper [A22] only after writing all of this up. This paper tests many, many transistors
and includes circuits. I intend to run more tests and measurements based on this paper.

Key:

Vav  = tested avalanche    (breakdown) voltage
TrAv = avalanche rise time (leading edge only: positive voltage pulse),

TfAv = avalanche fall time (leading edge only: negative voltage pulse),

Apk* = maximum stable 5ns pulse current (see paper [A7] page 12) 

Mn: E = EPITAXIAL, P = PLANAR, EP = EPITAXIAL PLANAR, ME = MESA diffused base, AN = ANNULA

TO-92 is aka SOT54; manufacturer known only where stated (abbreviations: Mot = Motorola, Nat Semi = National Semiconductor)

See below this table for all referenced papers (A,J,T) and avalanche related websites (V)

Ordinary transistors:                                       +-Metal or Plastic
Part     Pol    Freq  Vce  Vcb   Vav     Icdc     P   A/Ppk | Pkg     SMD   TrAv  TfAv   Mn Part     Manf/Papers(A,J,T)/Website(V)
2N657    NPN   40MHz 100V=100V  230V    0.50A 1.00W 4.00Wpk M TO-39   -     4.0          EP 2N657    A2
2N697    NPN   20MHz  40V  60V  140V    0.15A 0.65W 2.00Wpk M TO-39   -     3.0          EP 2N697    A2
2N706    NPN  200MHz  20V  25V   58V    0.01A 1.00W         M TO-18   -     3.0          EP 2N706    A2
2N914    NPN  300MHz  15V  40V          0.15A 0.36W         M TO-18   -     3.5ns        EP 2N914    A1
2N1072   NPN   70MHz  75V   ?           2.00A 5.00W         M TO-38   -                  ME 2N1072   R2d
2N2222   NPN  250MHz  30V  60V   90V    0.80A 1.80W         M TO-18   -                  EP 2N2222   V4
2N2369   NPN  500MHz  15V  40V   90V    0.20A 0.36W         M TO-18   -           350ps? EP 2N2369   J1-5,A12,V6
2N2369A  NPN  500MHz  15V  40V   82V    0.20A 0.36W         M TO-18   -     600ps 600ps  EP 2N2369A  V2,V5
KTN2369A NPN  500MHz  15V  40V          0.50  0.63W         P TO-92   -                  EP KTN2369A V3a
MPS2369  NPN  100MHz  15V  40V          0.20A 0.63W         P TO-92   -                  EP MPS2369  V6
PN2369A  NPN  100MHz  15V  40V   82V    0.20A 0.36W         P TO-92   -                  EP PN2369A  V6
2N2501   NPN  350MHz  20V  40V          0.01A 0.36W         M TO-18   -                  EP 2N2501   J4
2N3019   NPN  100MHz  80V 140V  175V    1.00A 0.80W 5.00Wpk M TO-39   -     2.0ns        EP 2N3019   A2
2N3020   NPN  100MHz  80V 140V  180V    1.00A 0.80W 5.00Wpk M TO-39   -     2.0ns        EP 2N3020   A2
2N3641   NPN  150MHz  30V  60V  250V    0.50A 0.35W         P TO-92/105                  EP 2N3641   A3,A4
2N3700   NPN   20MHz  80V 140V  260V    1.00A 1.80W 20Apk*  M TO-18   -                  EP 2N3700   A4,Nat Semi A7,A20
2N3904   NPN  250MHz  40V  60V          0.20A 0.63W         P TO-92   -                  EP 2N3904   A8,A18.A19,V4,R1c

2N4014   NPN  300MHz  40V  80V  132V    2.00A 1.40W 20Apk*  M TO-18   -                  EP 2N4014   Motorola A7

2N5190   NPN    2MHz  40V= 40V          4.00A 40.0W         M TO-225  -                  EP 2N5190   A13
2N5192   NPN    2MHz  80V  40V          4.00A 40.0W         M TO-225  -                  EP 2N5192   A13,A15
2N5271   NPN     MHz 280V 200V          5.00A 0.60W         M TO-39   -                  EP 2N5271   V1
2N5550   NPN  100MHz 140V 160V          0.30A 0.63W         P TO-92   -                  EP 2N5550   A6,A10
2N5551   NPN  100MHz 160V 180V  375V    0.30A 0.63W 28Apk*  P TO-92   -           300ps  EP 2N5551   Mot A5,A6,A7,A10,A11,A14,A18-A20
2N5681   NPN   30MHz 100V=100V  320V    1.00A 1.00W         M TO-39   -                  EP 2N5681   A4
BFG541   NPN 9000MHz  15V  20V   50V    0.12A 0.65W         P -       SOT223      150ps  EP BFG541   V2
BFR91    NPN 9000MHz  12V  15V          0.03A 0.18W         P -       SO50               EP BFR91    A12
BFR505   NPN 9000MHz  15V  20V   30V    0.02A 0.15W         P -       SOT23        70ps  EP BFR505   V3b
BSX61    NPN  250MHz  45V  70V  160V    1.00A 0.80W         M TO-39   -                  EP BSX61    A4
MJE200   NPN   65MHz  25V               5.00A 15.0W         M TO-126  -                  E  MJE200   A13
MPS6601  NPN  100MHz  25V= 25V  180V    1.00A 0.63W         P TO-92   -     1.0ns        EP MPS6601  A2
SS9013   NPN  149MHz  30V  40V          0.50A 0.63W         P TO-92   -                  EP SS9013   V4

ZTX300   NPN  150MHz  25V  25V  185V    0.50A 0.30W 20Apk*  P E       -                  EP ZTX300   A7

ZTX304   NPN  150MHz  70V= 70V          0.05A 0.30W         P TO-92E  -                  EP ZTX304   A6
ZTX653   NPN  140MHz 100V 120V  243V    6.0pk 1.00W 20Apk*  P E       -                  EP ZTX653   A7


Tested by me n/n = (number tested at >= voltage / total tested):
Part     Pol    Freq  Vce  Vcb   Vav     Icdc     P   A/Ppk   Pkg     SMD   TrAv  TfAv   Mn Part     Paper/Website ref (see below)

BC182    NPN  150MHz  50V  60V >188V4/6 0.10A 0.35W         P TO-92   -                  EP BC182    
BC457    NPN  300MHz  45V  50V >140V4/6 0.10A 0.50W         P TO-92   -                  EP BC457    
BC547    NPN  300MHz  50V  45V >132V4/4 0.10A 0.50W         P TO-92   -                  EP BC547    
BF392    NPN   50MHz 250V=250V >416V5/5 0.50A 0.63W 1.50W   P E       -                  EP BF392    

BF393    NPN   50MHz 300V=300V >350V5/5 0.50A 0.63W 1.50W   P TO-92   -                  EP BF393    Motorola
2N2222A  NPN  250MHz  30V  60V >136V4/4 0.80A 1.80W         M TO-18   -                  EP 2N2222A  A8,A18
2N2369A  NPN  500MHz  15V  40V > 60V2/2 0.20A 0.36W         M TO-18   -                  EP 2N2369A  V2,V5
2N3904   NPN  250MHz  40V  60V >108V2/2 0.20A 0.65W         P TO-92   -                  EP 2N3904   A8,A18.A19,V4,R1c

2N5551   NPN  100MHz 160V 180V >384V8/9 0.30A 0.63W         P TO-92   -                  EP 2N5551   A5,A6,A7,A10,A11,A14,A18-A20
MMBT5551 NPN  100MHz 160V 180V >390V20  0.60A 0.35W         P -       SOT23              EP MMBT5551 (eBay China) NO MORE AVAILABLE
MMBT5551 NPN  100MHz 160V 180V >162V4/4 0.60A 0.35W         P -       SOT23              EP MMBT5551 (eBay China) Jiangsu Changjiang 

MMBT5551 NPN  100MHz 160V 180V >300V4/4 0.60A 0.35W         P -       SOT23              EP MMBT5551 (eBay UK) Motorola

KST5551  NPN  100MHz 160V 180V >232V8/9 0.60A 0.35W         P -       SOT23              EP KST5551  (eBay China)
2N5262   NPN  250MHz  50V  50V >148V3/6 2.00A 0.80W         M TO-39   -                  EP 2N5262   RCA

ZTX601   NPN  150MHz 160V 180V >204V4/7 1.00A 1.00W 4.00Apk P E       -                  EP ZTX601   Zetex
ZTX650   NPN  140MHz  45V  60V >208V5/8 2.00A 1.00W 6.00Apk P E       -                  EP ZTX650   Zetex
ZTX651   NPN  140MHz  60V  80V > 92V1/1 2.00A 1.00W 6.00Apk P E       -                  EP ZTX651   Zetex

Others
2N2219A  NPN  250MHz  40V  75V          0.80A 3.00W         M TO-39   -     bad pinout   EP 2N2219A

2N4401   NPN  250MHz  40V  60V          0.63A 0.60W         P TO-92   -                  EP 2N4401   (inside Inrad 2-015 Qswt driver)

2N6515D  NPN   40MHz 250V=250V          0.50A 0.63W 1.50Wpk M TO-92   -                  EP 2N6515D
TIP31    NPN    3MHz  40V= 40V          3.00A   40W 5.00Apk M TO-220AB                   EP TIP31    (inside Inrad 2-017 Qswt o/p)
TIP31C   NPN    3MHz 100V=100V          3.00A   40W 5.00Apk M TO-220AB                   EP TIP31C   (inside Inrad 2-017 Qswt o/p)   

 

No data:
RT3333    -       -              250Vbr                     - ?          Tr1.5ns Tf2.5ns ?  RT3333   Raytheon A4 NO DATASHEET
CX1116   PNP      -              200Vbr                     - ?          Tr0.8ns Tf2.0ns ?  CX1116   Cermex   A4 NO DATASHEET
2SB1116  PNP      -   60V= 60V           1.00A 0.75W        P TO-92                      ?  2SB1116  CX1116 near equiv.

Avalanche transistors:
2N5271   NPN         250V 200V - 280Vbr  5.00A 0.60W        M TO-39  -    =1.0ns         AN 2N5271   V1  ancient unobtainium

RS3500   NPN                                                - ?                          E  RS3500   Raytheon A7,A20   ditto

RS3944   NPN              200V   194V    1.00A       20Apk* - ?                          E  RS3944   Raytheon A7       ditto
ZTX413   NPN  150MHz  50V                      0.50W 50Apk  P TO-92E -     1.0ns? 1.0ns? P  ZTX413   A12
ZTX415   NPN   40MHz 100V 260V   335V          0.68W 60Apk* P TO-92E -     1.0ns? 1.0ns? P  ZTX415   A7,A12,A15,A16,A17,V1
FMMT413  NPN  150MHz  50V                      0.33W 50Apk  P -      SOT23               P  FMMT413  A18
FMMT415  NPN   40MHz 100V                      0.33W 60Apk  P -      SOT23               P  FMMT415  A13,A18
FMMT417  NPN   40MHz 100V        600V          0.33W 60Apk  P -      SOT23        100ps  P  FMMT417  A9,A15,A18

AVALANCHE TRANSISTOR SELECTION - best transistor types for avalanche.

The easiest way to build a high voltage avalanche driver is to use Zetex ZTX415 etc purpose designed avalanche transistors however they are very expensive, typically $10 each. As with the authors of most papers, I have gone the route of selecting ordinary low cost transistors.

From papers and articles I read, most of which are listed below, I formulated the following initial criteria for selecting ordinary transistors for operation in avalanche mode for use as Q-switch drivers for the LHC Project. Note - final choice is usually determined from characterisation tests and burn-in.

1.  Low cost

2.  Older devices

3.  Epitaxial

4.  High current handling

5.  High power dissipation

6.  Frequency at least 100MHz

7.  Short rise/falltime on leading edge

8.  Small package: Low inductance and capacitance

9.  Vcbo as high as possible (fewer devices: lower C, L)

10. Pinout best suited for low C, L

11. Vcbo close to Vceo

12. Hfe ~120 (see paper [A10] but difficult to achieve without a huge sample quantity)

I assume the reason for suggesting older devices are better, into which I read: more rugged, is because they contain more material than modern devices that are streamlined with finer geometries to increase the yield per wafer and minimise the number of manufacturing steps to reduce cost.

R1a EPITAXIAL: 'Epitaxy refers to the deposition of a crystalline overlayer on a crystalline substrate'
http://en.wikipedia.org/wiki/Epitaxy

R1b Patent for [epitaxial] fast switching high current avalanche transistor
Publication number US3319138 A, 09-May-67
Inventors H.Bergman Jr, J.Brixey, D.Tschudi
Assignee  Texas Instruments Inc
'In a preferred embodiment of the present invention, a low resistivity solid substrate supports an epitaxial layer having a resistivity of at least an order of magnitude higher than that of said substrate. A base layer in the surface of the epitaxial layer is of thickness about one-fourth the thickness of the epitaxial layer. An emitter layer in the base layer is of thickness about six-tenths the thickness of the base layer. Fig. 1 is a sectional view of an epitaxial transistor.' (see below) 
http://www.google.co.uk/patents/US3319138

R1c Discussion: epitaxial transistors
WEBSITE Google Groups, sci.electronics.design
J.Larkin, Highland Technology Inc., 08-Oct-12:
'Modern epitaxial transistors don't avalanche well. Older diffused-junction types sometimes do.
The Zetexes are made in Russia, presumably on an old fab line.
'
T.Williams, 9 October 2012:
'I've always found 2N3904s work well. Fast and RF transistors tend to work as well.'
http://groups.google.com/forum/#!topic/sci.electronics.design/dLUdLxH6IYA

R2a MESA - Diffused junctions
'These transistors were the first to have both diffused bases and diffused emitters. Unfortunately, like all earlier transistors, the edge of the collector-base junction was exposed, making it sensitive to leakage through surface contaminants, thus requiring hermetic seals or passivation to prevent degradation of the transistor's characteristics over time.'
[Sealed planar types are better]
http://en.wikipedia.org/wiki/Diffusion_transistor#Mesa_transistor

R2b Patent for Silicon mesa transistor structure 
Publication number US5128733 A, 07-Jul-92
Inventor S.Tyson
Assignee  United Technologies Corporation
'The invention relates to an improved silicon mesa structure in which a field insulator is made to overlap the mesa structure by a predetermined amount together with processing of the mesa underneath the field insulator structure. Fig. 5 illustrates a cross section of a mesa constructed according to the invention.' (see below).
http://www.google.com.gt/patents/US5128733

R2c Wikipedia - mesa transistor
'The diffused silicon "mesa transistor" was developed at Bell in 1955 and made commercially available by Fairchild Semiconductor in 1958.[29], C.Lécuyer, D.Brock (2010). Makers of the Microchip:
A Documentary History of Fairchild Semiconductor. MIT Press. pp. 10-22. ISBN 9780262014243.
'
http://en.wikipedia.org/wiki/History_of_the_transistor

R2d 2N1072
M.Burgess 2010 - Diffusion Technologies at Bell Laboratories
The MESA 2N1072 (spec 75Vce 2A 5W TO-38 metal) was developed in 1961 to drive magnetic core memories.
http://sites.google.com/site/transistorhistory/Home/us-semiconductor-manufacturers/western-electric-main-page

R3 PLANAR - 'Planar transistors have a silica passivation layer to protect the junction edges from contamination, making inexpensive plastic packaging possible without risking degradation of the transistor's characteristics over time'.
http://en.wikipedia.org/wiki/Diffusion_transistor#Planar_transistor

R4 Vcbo = Vceo 
WEBSITE Username Madshaman, 01-Nov-13
'One paper described a general guideline for choosing candidates for avalanche mode transistors based on: Vcbo being close to Vceo'
http://www.eevblog.com/forum/projects/scoping-signals-in-the-10s-of-kilovolts/msg320889/#msg320889

The figures below are from the patents above:

   US3319138 Fig. 1 Epitaxial transistor                          US5128733 Fig.5 Mesa diffusion  

JIM WILLIAMS

This first section is reserved for application notes produced by the late Jim Williams of
Linear Technology Corp, as his work is universally recognised as a reference for an avalanche transistor design using the 2N2369. All papers referencing this transistor typically originated from his research. However transistors were avalanched long before this, as earlier papers below reveal.


J1  2N2369
    High Speed Amplifier Techniques, P.93 - APPENDIX D Measuring Probe-Oscilloscope Response,

    J.Williams, Linear Technology AN-47, August 1991
    Excellent article describing measurement techniques. Also contains many other topics of interest
    http://cds.linear.com/docs/en/application-note/an47fa.pdf

J2  2N2369
    Practical Circuitry for Measurement and Control Problems, P.21: Triggered 250 Picosecond Rise Time
    Pulse Generator, J.Williams Linear Technology AN-61, August 1994
    http://cds.linear.com/docs/en/application-note/an61fa.pdf

J3  2N2369
    30ns Settling Time Measurement for a Precision Wideband Amplifier,
    P.18: Appendix B - Subnanosecond rise time pulse generators for the rich and poor

    J.Williams, Linear Technology AN-79, September 1999
    http://cds.linear.com/docs/en/application-note/an79.pdf

J4  2N2369, 2N2501 (coax-based pulse width)
    Slew Rate Verification for Wideband Amplifiers - The Taming of the Slew,

    J.Williams, Linear Technology AN-94, May 2003
    http://cds.linear.com/docs/en/application-note/an94f.pdf

J5  2N2369
    Power Conversion, Measurement and Pulse Circuits,

    J.Williams, Linear Technology AN-113, August 2007
    http://cds.linear.com/docs/en/application-note/an113f.pdf

AVALANCHE TRANSISTOR RELATED PAPERS WITH LINKS

A1  2N914 (P.35) 2N2369 (P.41)
    Variable-Width Pulse Generation Using Avalanche Transistors, thesis, W.Magnuson, 16-Oct-62 
 http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/49919/MagnusonWaldoG1963%28109%29.pdf?sequence=5

A2  2N657, 2N697, 2N706, 2N3019, 2N3020
    A Nanosecond, High-Current Pulse Generator Using Paralleled Avalanche Transistors, Naval Research      Laboratory report 6539, 08-Sep-67, P.10 has excellent RLC critical damping graph
    http://www.overunity.com/12736/kapanadze-cousin-dally-free-energy/dlattach/attach/115334

A3  2N3641
    Increasing the Stability of Series Avalanche Transistor Circuits,

    J.Pellegrin, Stanford Linear Accelerator Center, September 1969
    http://www.slac.stanford.edu/pubs/slacpubs/0500/slac-pub-0669.pdf

A4  2N3700, CTX1116, 2N5681, BSX61
    Sweep Devices for Picosecond Image-Converter Streak Cameras, 1979

    B.Cunin, J.Miehe, Université Louis Pasteur, M.Schelev, J.Serduchenko*, P.Lebedev, Physical
    Inst., USSR Academy of Sciences, MoscowJ; *Thebault Centre d'Etudes Nucléaires de Saclay, France
    http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/11/544/11544951.pdf

A5  2N5551
    1000V, 300ps Pulse-Generation Circuit Using Silicon Sdvanced Devices, D.Benzel, M.Poche,

    Lawrence Livermore National Laboratory, 03-Jan-85
    *FILE ONLY* (SEE BELOW) 2N5551 1k2V 470pF 300ps pulse gen transistor avalanche RSI01456.pdf

A6  ZTX304, 2N5550, 2N5551

    A Fast Cavity Dumper for a Picosecond Glass Laser,
    S.Oak, K.Bindra(1) B.Narayan and FL.K.Khardekar(2), 05-Aug-90
    1. Centre for Advanced Laser Technology, Indore-452 012, India
    2. Bhabha Atomic Research Centre, Trombay, Bombay-400 085, India
    http://icecube.wisc.edu/~kitamura/NK/Flasher_Board/Useful/research/RSI00308.pdf

 

A7  2N4014, 2N5551, RS3500, RS3944 (Raytheon), ZTX300, ZTX653

    Avalanche transistor selection for long-term stability in streak camera sweep and pulser
    applications, S.Thomas, R.Griffith, A.Teruya, 05-Sep-90

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&cad=rja&uact=8&ved=0ahUKEwil2qmHxajQAhUMLsAKHW7SDmoQFghkMAk&url=https%3A%2F%2Fwww.researchgate.net%2Ffile.PostFileLoader.html%3Fid%3D56cf8088b0366daffc38e673%26assetKey%3DAS%253A333145279877122%25401456439432725&usg=AFQjCNGnvDz2Fmkp3mdUORA9EsWa74zySQ

A8  2N3904, 2N2222A, MPS6601 (TO-92)
    Describes exponential transmission line pcb design to counter inductance and shape output pulse
    High voltage pulse generation using current mode second breakdown in a bipolar junction transistor,

    R.Baker, EG&G, Rev.Sci.Instrum Vol 64, No.4, April 1991
    http://cmosedu.com/jbaker/papers/1991/RSI621991.pdf

A9  FMMT417
    Sub-Nanosecond Avalanche Transistor Drivers for Low Impedance Pulsed Power Applications,

    Molina, A.Mar, F.Zutavern, G.Loubriel, M.O'Malley, Sandia National Laboratories, 2002
    No URL - *FILE ONLY* (SEE BELOW) FMMT417 Sub-nanosecond avalanche transistor drivers - 2001_026.pdf

A10 2N5550, 2N5551
    A Transistorised Marx bank Circuit Providing Sub-Nanosecond High-Voltage Pulses,

    V.Rai, M.Shukla, R.Khardekar, Centre for Advanced Technology, lndore 452 01 3, India, 22-Nov-93

    This paper suggests 2N5551 with Hfe ~120 is best: Classic' 2N5551 circuit driven by a
    pulse transformer.
    http://u.dianyuan.com/bbs/u/67/2354671216795047.pdf

A11 2N5551
    A Variable Nano-Second Pulse Duration Laser Pulse Slicer Based on HV Avalanche Transistor Switch,

    J.Chakera, P.Naik, S.Kumbhare, P.GuptaJournal of the Indian Institute of Science Vol 76 No 2, 1996,

    My file: 643-1903-1-PB.pdf
    http://journal.library.iisc.ernet.in/index.php/iisc/article/view/643/663

A12 2N2369, ZTX413, ZTX415, BFR91, (BFR51)
    Analog Circuits Cookbook, I.Hickman, 2nd Ed. page 26 - Working with avalanche transistors, Mar 1996
    http://www.qsl.net/kb7tbt/manuals/Ham%20Help%20Manuals/Analog-Circuits-Cookbook.pdf

A13 FMMT415, MJE200, 2N5190, 2N5192 [TO-225A] (avalanche transistors)
    Laser Pulser for a Time-of-Flight Laser Radar, A.Kilpela, J.Kostamovaara, 18-Feb-97

    University of Oulu, Electronics Laboratory, Linnanmas, FIN-90570 Oulu, Finland
    http://icecube.wisc.edu/~kitamura/NK/Flasher_Board/Useful/research/RSI02253.pdf

A14 2N5551 (MY 1st REF)
    High Voltage Fast Ramp Pulse Generation using Avalanche Transistor, 27-Apr-98,
    L.Jinyuan, S.Bing, C.ZenghuState Key Laboratory of Transient Optics Technology, China 710068
    http://icecube.wisc.edu/~kitamura/NK/Flasher_Board/Useful/research/RSI03066.pdf

A15 ZTX415, FMMT417, 2N5192
    Pulsed Time-of-Flight Laser Range Finder Techniques for Fast High Precision Measurement
    Applications, A.Kilpelä, Faculty of Technology, University of Oulu, Finland, 30-Jan-04
    http://jultika.oulu.fi/files/isbn9514272625.pdf

A16 ZTX415
    High Voltage nanosecond pulse switching circuit based on avalanche transistor, 2008

    A.Tamuri, N.Bidin, Y.Daud, University Teknologi, Johor, Malaysia
    http://core.ac.uk/download/pdf/11793217.pdf

A17 ZTX415
    Nanoseconds Switching for High Voltage Circuit using Avalanche Transistors, November 2009,

    A.Tamuri, N.Bidin, Y.Daud, University Teknologi, Johor, Malaysia
    http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.652.6701&rep=rep1&type=pdf

A18 2N2222A, 2N3904, 2N5551, FMMT413, FMMT415, FMMT417
    Thesis - Fast Electronic Driver for Optical Switches, M.Woolston, Spring 2012
    This excellent paper explores multiple Q-switch design topologies.
    Page 27: 'typically, small signal planar epitaxial bipolar transistors are avalanched.'
  http://dspace.library.colostate.edu/bitstream/handle/10217/67552/Woolston_colostate_0053N_10962.pdf?sequence=1

A19 2N3904, 2N5551
    The Characterization of DvDt Capabilities of Cree SIC schottky Diodes using an
    Avalanche Transistor Pulser, Cree SIC Power White Paper (dated after Oct 2014)
 http://www.wolfspeed.com/downloads/dl/file/id/555/product/0/the_characterization_of_dv_dt_capabilities_of_cree_sic_schottky_diodes_using_an_avalanche_transistor_pulser.pdf

A20 RS3500, 2N3700, 2N5551, (Raytheon)

    Development of X-ray Streak Vamera Electronics at AWRE, M.Jackson, R.Long, D.Lee, N.FreemanLaser,
    Particle Beams, Volume 4, Issue 1 February 1986, pp. 145-156

    http://opensample.info/order/d8368a2169bc85360738d11e4518298d0d89d62b

A21 FMMT417

    Compact Subnanosecond Pulse Generator Using Avalanche Transistors for Cell Electroperturbation
    Studies, P.Krishnaswamy, P.Vernier, A.Kuthi, USA Sept 2007. Excellent paper. 

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwjC4I3D1rzXAhWJDMAKHcyLCagQFgg8MAI&url=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F3340933_Compact_Subnanosecond_Pulse_Generator_Using_Avalanche_Transistors_for_Cell_Electroperturbation_Studies&usg=AOvVaw2rifeKnnUQkPxbiAX3z5va

A22 2N5192, 2N4922, 2N4400, 2N4300, 2N3923, 2N3904, 2N3707, 2N3694, 2N3643, 2N3641, 2N3569, 2N3568,
    2N3565, 2N3503, 2N3055, 2N3019, 2N2714, 2N2484, 2N2405, 2N2222, 2N2218, 2N2102, 2N1482, 2N910,
    2N697, TT3642, ZTX300, SE4010, MPS6520, BFY50, AX8001, AX6101 ADD THESE TO MY TABLE ABOVE

    A fast high voltage avalanche Q-Switch driver, ADA096543 Australia Dept. of Defence, August 1981

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwiZgYqf1rzXAhXFC8AKHb48DuEQFgg1MAE&url=http%3A%2F%2Fwww.dtic.mil%2Fget-tr-doc%2Fpdf%3FAD%3DADA096543&usg=AOvVaw3oaY9-UAMORB4_9jt6FKaq

A23 ZTX415
    The ZTX415 Avalanche Mode Transistor, N.Chadderton, Zetex AN8, 02-Jan-96

    https://www.mikrocontroller.net/attachment/79085/AN8_The_ZTX415_Avalanche_Mode_Transistor__ZET.pdf

AVALANCHE RELATED PAPERS WITHOUT SOURCES OR LINKS

 

A24 2ns Rise Time Pulses Obtainable from Fairchild 2N696-2N697 Si Mesa Transistors in Avalanche Mode,
    I.Haas, Fairchild App. Data, App.1, 1958

A25 Thermal Response of Transistors in the Avalanche Mode,
    R.Beeson, I.Haas, V.Grinich,Fairchild Semiconductor, Technical Paper 6, October 1959

A26 Triggering of Avalanche Transistor Pulse Circuits,
    R.Seeds, Technical Report No. 1653-1,Stanford University, California, 05-Aug-60

A27 Milli-microsecond Avalanche Switching Circuits utilizing Double-Diffused Silicon Mesa Transistors,
    I.Haas, Fairchild App. Data, App.8/2, December 1961

A28 Avalanche Pulse Generators, Pages 27, pp23-30, H.Dill, Semiconductor Products, February 1962

A29 Avalanche Transistor Circuits for Generating Rectangular Pulses, D.Hamilton, F.Shaver, P.Griffith,
    Electronic Engineering, December 1962

A30 Avalanche Transistor Switching Circuits, G.Bell,National Semiconductor Company, Eng Memo. 12-Mar-63

A31 A Triple Subnanosecond Pulse Generator with Avalanche Transistors and Charge-Storage Diodes,

    D.Ivekovic, Nuclear Instruments and Methods 32:339-340, 1965

AVALANCHE TRANSISTOR RELATED WEBSITES

V1  2N5271, ZTX415
    Richard O, WEBSITE A DIY pulser using the 2N5271, 08-Feb-15 
    http://forum.allaboutcircuits.com/threads/fast-risetime-falltime-pulsers.124518

V2  2N2369A, BFG541
    V.Himpe, WEBSITE The Picosecond Pulser,  (dated after December 2013)
    http://www.siliconvalleygarage.com/projects/picosecond-pulser.html

V3a KTN2369A SMD
    J.Diddy B, WEBSITE Transmission line avalanche pulse generator, 27-Jan-13
    http://www.eevblog.com/forum/projects/transmission-line-avalanche-pulse-generator

V3b BFR505 SMD
    J.Diddy B, WEBSITE Avalanche Transmission line pulse generator Part II, 27-Jan-13    
    http://w140.com/Avalanche_Transmission_Line_Pulse_Generator_II.pdf

V4  2N3904 (2N2222, SS9013)

    K.Wong, WEBSITE Avalanche pulse generator build [sic] using 2N3904, 18-May-13
    http://www.kerrywong.com/2013/05/18/avalanche-pulse-generator-build-using-2n3904/
   
W4b R.Elkins comment: 2N3904 SOT23, 2N2222A SOT23

V5  2N2369A
    M.Gallant, WEBSITE Nanosecond Avalanche Transistor Pulse Generator, 02-Nov-12
    http://www.jensign.com/avalanchepulsegenerator

V6  PN2369A.(2N2369, MPS2369)
    C.Weagle, iceNINE Tech, WEBSITE Homebrew Really Fast Pulse Generator, 02-Feb-06
    http://www.i9t.net/fast-pulse/fast-pulse.html

Paper [A7] is of particular interest as this describes a burn-in procedure which measures the drift in breakdown voltage. Prior to burn-in they hand picked devices satisfying the following criteria:

a) low noise at the operating bias current,

b) sharp knee (i.e., a sharp transition at the Vzener voltage),

c) adequately high self-avalanche current,

d) they all avalanche.

On conclusion of burn-in they rejected any that had self-avalanched and selected those with avalanche voltage drift of less than 0.1% per month over 3 months of testing.

'We have identified the Motorola 2N4014 and 2N5551 and the Raytheon RS3944 as three transistor types that exhibit avalanche characteristics and have long term collector breakdown voltage stability superior to other transistors tested.

Stability on all types has been improved by power burn-in. An automatic avalanche transistor burn-in tester allows power burn-in of up to 1008 transistors at a time. The tester is controlled by a PC and can be programmed to acquire data, unattended, at any desired rate or period. Data are collected from each run and stored. Data runs were typically 3 to 4 months long, with readings taken weekly. The transistors were biased into the avalanche or zener region by individual current sources set to about 20% of the self-avalanche current for each type of transistor. Motorola, Zetex and National transistors were operated at 100 microamperes (pA) [sic], and the Raytheon units were operated at 20pA. The electric field causes migration of material in the high field region at the surface near the collector-base junction, creating the voltage instability.

 

Devices from Fairchild, Motorola, National Semiconductor, Raytheon, Zetex and several other companies have been evaluated for avalanche application. The yield of usable transistors was above 97% for the National 2N3700 (TO-18 version of the 2N3019), the Motorola 2N4014 and 2N5551, the Raytheon RS3944 (an RS3500 selected for self-avalanche current above 130mA) and Zetex's ZTX653, ZTX300 and ZTX415.'

Data from their burn-in measurements on page 12, is summarised below:

Mfg.  National    Motorola    Motorola    Raytheon       Zetex       Zetex     Zetex
Type    2N3700      2N4014      2N5551      RS3944      ZTX653      ZTX300    ZTX415
#          126          30         126          93          61           -         -
Vcbo      120V         80V        180V        200V        120V         25V      260V
VZener    260V        132V        373V        194V        243V        185V      335V
Vdrift  0.370%      0.025%      0.084%      0.045%       0.27%          -         -
Vpulse    180V        115V        300V        150V        150V        150V      300V
%Vzener    70%         87%         80%         77%         62%         81%       90%
Ic min    1.0A        2.0A        0.6A        1.0A        6.0Apk      0.5A      0.5A
Ipulse   20.0A       20.0A       28.0A       20.0A       20.0A       20.0A     60.0A
I^2T      2.0µ        2.0µ        4.0µ        2.0µ        2.0µ       62.0µ     72.0µ
IselfAv 1-4 mA       >2 mA                 >130 µA      1-4 mA  10-100 µA    >100 µA
aV       26.0       132.8        15.7         6.5        11.3           -         -
aV+Vz     9.8         5.5         3.7         3.3         1.5           -         -

Where:
#       = Number of transistors,
Vcbo    = Collector-base maximum operating voltage from the manufacturers' data sheets.
Vzener  = Measured collector-base breakdown voltage.
Vdrift  = Time rate of change of collector voltage in percent per month after 3 or 4 months of power burn-in.
Vpulse  = Output pulse voltage we measured in the avalanche mode with a 100-ohm load.
%Vzener = Ratio of Vpulse to Vzener, expressed as a percent.
Ic max  = Rated maximum collector current from the manufacturers' data sheets.
Ipulse  = Absolute maximum pulse current determined for reliable operation 5ns pulse, except ZTX415 20ns (datasheet)
I^2T    = Power handling capability of the device, maximum safe operating value I for a particular pulse width T.
IselfAv = Current measured at which the transistor breaks into avalanching relaxation oscillation using 200R B to E.
aV      = Sample standard deviation in volts.
aV+Vz   = Ratio of the standard deviation to the collector-base breakdown voltage, an important parameter when
          selecting a transistor type for matching to a resistive or zener voltage bias network.

Selection of avalanche transistors for the LHC Project

Using a Tektronix 577 curve tracer on the 400V range, I selected all transistors that had the highest breakdown voltage. In the case of SMD devices, I purchased a Peak Semiconductors SMD test board and secured it to a small block of wood on which I had inserted 4mm plugs to mate with the 577. Below is a photograph of the switch settings and the SMD adaptor. For leaded devices I wired a SIL socket to similar 4mm plugs.

P1120678
P1120764

Above: Peak Electronics SOT-23 test socket with MMBT5551 in it - SMD package code G1

P1120989

Of the three transistors selected in paper A7, only the 2N5551 is readily available in 2016. I had already tried several other types before I discovered paper [A7] late in 2016 and at this time I had identified 2N5551, MMBT5551 and BF392 as potential candidates. I obtained some 300V Motorola BF393s hoping for a higher voltage but they broke down around 350V, then I noticed they were TO-92s. Perhaps my better 250V E-line BF392s were made by New Jersey Semiconductor?

I decided to apply [A7]'s selection process to the leaded 2N5551 and BF392 because I could burn in 10 devices using a cheap 40-way SIL socket. If the lead inductance and capacitance proved a problem for the LHC driver, I would then find a way to burn in the MMBT5551s.

NEED TO ADD RISE TIME & JITTER TESTS

Paper [A6] includes a simple circuit for avalanche transistor selection.  

a) low noise at the operating bias current,

b) sharp knee (i.e., a sharp transition at the Vzener voltage),

c) adequately high self-avalanche current,

d) they all avalanche.

1. Burn-in is constant voltage with 20% .

2. 

DOCUMENTS

JIM WILLIAMS:

AVALANCHE TRANSISTOR RELATED

bottom of page