3. Useful Tables
T1 OPTICAL DENSITY D = -log10 (Tx)
Density Attenuation vs Transmission
OD0 = 10^0 = 1 = 100% = 1x OD0
OD0.3 = 10^0.3 = 2 = 50% = 1/2 OD0.3
OD0.5 = 10^0.5 = 3.16 = 32% = 1/3 OD0.5
OD1 = 10^1 = 10 = 10% = 1/10 OD1
OD1.5 = 10^1.5 = 31.6 = 3.2% = 1/32 OD1.5
OD2 = 10^2 = 100 = 1% = 1/100 OD2
OD2.5 = 10^2.5 = 316.2 = 0.3% = 1/316 OD2.5
OD3 = 10^3 = 1,000 = 0.1% = 1/1k OD3
OD4 = 10^4 = 10,000 = 0.01% = 1/10k OD4
OD5 = 10^5 = 100,000 = 0.001% = 1/100k OD5
OD6 = 10^6 = 1,000,000 = 0.0001% = 1/1M OD6
OD7 = 10^7 = 10,000,000 = 0.00001% = 1/10M OD7
OD8 = 10^8 = 100,000,000 = 0.000001% = 1/100M OD8
OD9 = 10^9 = 1000,000,000 = 0.0000001% = 1/1G OD9
OD10 = 10^10 = 10,000,000,000 = 0.00000001% = 1/10G OD10
T2 PLASTIC GAUGE
Gauge Imperial Metric Equivalent
1 0.00001" 0.000254mm 0.254µm
2 0.00002" 0.000508mm 0.508µm
3.937 0.000039" 0.001mm 1.00µm
5 0.00005" 0.00127mm 1.27µm
10 0.0001" 0.00254mm 2.54µm
20 0.0002" 0.00508mm 5.08µm
50 0.0005" 0.0127mm 12.70µm
100 0.001" 0.0254mm 25.40µm
200 0.002" 0.0508mm 50.80µm
500 0.005" 0.127mm 127.00µm
1000 0.01" 0.254mm 254.00µm
2000 0.02" 0.508mm 508.00µm
3937 0.03937" 1.00mm 1000.00µm
5000 0.05" 1.27mm 1270.00µm
7874 0.07874" 2.00mm 2000.00µm
100000 1.0" 25.40mm 25400.00µm
T3 HOSE DIAMETERS
Metric Imperial Fraction Approximation
3.17500mm = 0.1250" = 1/8" 3.0mm
3.96880mm = 0.1563" = 5/32" 4.0mm
4.76250mm = 0.1875" = 3/16" 5.0mm
5.55625mm = 0.21875 = 7/32" 5.5mm
6.35000mm = 0.2500" = 1/4" 6.0mm
7.93750mm = 0.3125" = 5/16" 8.0mm
9.50000mm = 0.3750" = 3/8" 10.0mm
11.11250mm = 0.4375" = 7/16" 11.0mm
12.70000mm = 0.5000" = 1/2" 13.0mm
14.28750mm = 0.5625" = 9/16" 14.0mm
15.87500mm = 0.6250" = 5/8" 16.0mm
17.85940mm = 0.7031 = 45/64 18.0mm
19.05000mm = 0.7500" = 3/4" 19.0mm
19.84380mm = 0.7813" = 25/32" 20.0mm
22.22500mm = 0.8750" = 7/8" 22.0mm
T4 DISTANCE
1µm = 0.001mm = 10^-6m = 1 micron
10µm = 0.010mm = 10^-5m = 10 micron
100µm = 0.100mm = 10^-4m = 100 micron
T5 TIME DOMAIN
as attosecond = 10^-18 = 1/1000 of a fs speed of electrons
fs femtosecond = 10^-15 = 1/1000 of a ps reactions in molecules/fs lasers
ps picosecond = 10^-12 = 1/1000 of a ns
ns nanosecond = 10^-9 = 1/1000 of a µs
µs microsecond = 10^-6 = 1/1000 of a ms
ms millisecond = 10^-3 = 1/1000 of a s
T6 POWER SPECTRUM
KW kilowatt = 10^+3 = 1000 x W (1mJ pulse with 10ns duration = 100 KW)
MW megawatt = 10^+6 = 1000 x KW (1 J pulse with 10ns duration = 100 MW)
GW gigawatt = 10^+9 = 1000 x MW (1mJ pulse with 100fs duration = 10 GW)
TW terawatt = 10^+12 = 1000 x GW (1 J pulse with 100fs duration = 10 TW)
PW petawatt = 10^+15 = 1000 x TW (1kJ pulse with 100fs duration = 10 PW)
EW exawatt = 10^+18 = 1000 x PW (1MJ pulse with 100fs duration = 10 EW)
T7 FREQUENCY SPECTRUM
3kHz to 30kHz Very Low Frequency (VLF)
30kHz to 300kHz Low Frequency (LF)
300kHz to 3,000kHz Medium Frequency (MF)
3,000kHz to 30,000kHz High Frequency (HF)
30,000kHz to 300,000kHz Very High Frequency (VHF)
300,000kHz to 3,000,000kHz Ultra High Frequency (UHF)
T8 WAVELENGTH / FREQUENCY SPECTRUM
λ Frequency Frequency
10pm = 2.9979^10 GHz = ~ 30 EHz (ExaHz)
100pm = 2.9979^9 GHz = ~ 3 EHz (ExaHz)
1nm = 2.9979^8 GHz = ~300 PHz (PetaHz)
10nm = 2.9979^7 GHz = ~ 30 PHz (PetaHz)
100nm = 2.9979^6 GHz = ~ 3 PHz (PetaHz)
1µm = 2.9979^5 GHz = ~300 THz (TeraHz)
10µm = 2.9979^4 GHz = ~ 30 THz (TeraHz)
100µm = 2.9979^3 GHz = ~ 3 THz (TeraHz)
1mm = 2.9979^2 GHz = ~300 GHz (GigaHz)
T9 WAVELENGTH / PHOTON ENERGY SPECTRUM
https://en.wikipedia.org/wiki/Electronvolt
λ Energy Energy Frequency Class
10pm = 12398 k eV = 1.2398E^+5 eV = 30EHz γ
100pm = 12.398k eV = 1.2398E^+4 eV = 3EHz HX
1nm = 1.2398k eV = 1.2398E^+3 eV = 300PHz SX
10nm = 12398 eV = 1.2398E^+2 eV = 30PHz EUV
100nm = 12.398 eV = 1.2398E^+1 eV = 3PHz NUV
1µm = 1.2398 eV = 1.2398E^+0 eV = 300THz NIR
10µm = 12398 m eV = 1.2398E^-1 eV = 30THz MIR
100µm = 12.398m eV = 1.2398E^-2 eV = 3THz FIR
1mm = 1.2398m eV = 1.2398E^-3 eV = 300GHz EHF
T10 WAVELENGTH / PHOTON ENERGY SPECTRUM
λ Energy Energy Energy
10pm = 1.23980^+5 eV = 1.9864^-14 Joules = 1.9864^-7 Ergs
100pm = 1.23980^+4 eV = 1.9864^-15 Joules = 1.9864^-8 Ergs
1nm = 1.23980^+3 eV = 1.9864^-16 Joules = 1.9864^-9 Ergs
10nm = 1.23980^+2 eV = 1.9864^-17 Joules = 1.9864^-10 Ergs
100nm = 1.23980^+1 eV = 1.9864^-18 Joules = 1.9864^-11 Ergs
1µm = 1.23980^±0 eV = 1.9864^-19 Joules = 1.9864^-12 Ergs
10µm = 1.23980^-1 eV = 1.9864^-20 Joules = 1.9864^-13 Ergs
100µm = 1.23980^-2 eV = 1.9864^-21 Joules = 1.9864^-14 Ergs
1mm = 1.23980^-3 eV = 1.9864^-22 Joules = 1.9864^-15 Ergs
T11 RADIATION
T11a RADIATION TYPES
These definitions on hold - I don't yet know if alpha is different to k-alpha
X-ray
α, alpha example: polonium-210 emits alpha radiation
α, k-alpha example:
β, beta example: beta radiation may produce bremsstrahlung x-rays
γ, gamma example: bremsstrahlung produces secondary gamma radiation
Bremmstrahlung example: produced by LIBS laser strike
[G14] α, alpha radiation example: polonium-210 emits alpha radiation
http://en.wikipedia.org/wiki/Alpha_decay
[G15] β, beta radiation example: beta radiation may produce bremsstrahlung x-rays
http://en.wikipedia.org/wiki/Beta_particle
[G16] γ, gamma radiation example:
http://en.wikipedia.org/wiki/Gamma_ray
[G17] X-rays defined
http://en.wikipedia.org/wiki/Characteristic_X-ray
[G18] Bremsstrahlung, k-alpha, k-beta radiation defined
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/xrayc.html
A sievert (Sv), is a measure of radiation absorbed by a person, named after Swedish medical physicist Rolf Sievert. Typical measurements are per hour, e.g. 10µSv/hr (a dangerous dosage).
A becquerel (Bq), named after French physicist Henri Becquerel, is a measure of radioactivity.
A quantity of radioactive material has an activity of 1Bq if one nucleus decays per second, and
1kBq if 1,000 nuclei decay per second.
http://www.translatorscafe.com/cafe/EN/units-converter/radiation/21-1/sievert%2Fsecond-gray%2Fsecond
T11b RADIATION EXPOSURE LEVELS
Dose Health Risk
<200nSv/hr Safe (background level) Normal levels
500nSv/hr Safe (e.g. surrounded by granite walls) Medium to long term habitation
1µSv/hr Safe (ascending or descending airplane) Short term habitation only
2µSv/hr Elevated (airplane at a cruising height) Take safety precautions
5µSv/hr Danger Relocate asap!
10µSv/hr Danger Relocate NOW!
20µSv/hr High danger Sickness risk!
1mSv/hr High danger Heightened sickness risk!
10mSv/hr High danger Evacuate immediately!
100mSv/hr Severe Radiation poisoning
1Sv/hr Severe Vomiting
>10Sv/hr Lethal Organ failure and death within hours!
T12 ELECTROMAGNETIC SPECTRUM
http://en.wikipedia.org/wiki/Electromagnetic_spectrum
Wavelength = 3 x 10^8/freq = 1/(wave number x 100) = 1.24 x 10^-4/eV
https://en.wikipedia.org/wiki/Ultraviolet
Short wavelength = high energy & high frequency
GAMMA = 0.10 - 10pm (0.001nm - 0.01nm) sub-atomic particle = 1pm (gamma, γ)
XRAY = 10 - 100pm (0.01nm - 0.1nm ) hard xray: K-alpha, K-beta (atom = 0.1nm)
XRAY = 0.1 - 10nm Soft xray (H2O module = 1nm)
EUV/XUV = 10 - 121nm Extreme UV Completely absorbed by the atmosphere
HL-a = 121 - 122nm Hydrogen Lyman-alpha Hydrogen spectral line
PROJECT LIMIT 193nm
VUV/DUV = 10 - 200nn Vacuum ultraviolet <190nm needs a vacuum
UVC = 100 - 280nm Short wave Totally absorbed by the ozone layer
UV = 100 - 400nm UV 254nm anti-bacterial / germicidal UV lamp
FUV = 122 - 400nm Far UV
MUV = 200 - 300nm Middle UV
UVB = 280 - 315nm Medium wave UV Mostly absorbed by the ozone layer
NUV = 300 - 400nm Near UV Visible to birds, insects, fish
UVA = 315 - 400nm Long wave not absorbed by ozone layer; black UV light
VIS = 400 - 700nm Visible (750THz - 425THz) Visible to humans
NIR = 700 - 1000nm Near infrared Up to night vision
SWIR = 1 - 3µm Short wavelength infrared Long range telecomms
MWIR = 3 - 5µm Medium wavelength infrared Heat seeking missile
LWIR = 5 - 14µm Long wavelength infrared Thermal imager
PROJECT LIMIT 10.64µm CO2 laser
MIR = 10 - 100µm Mid infrared
FIR = 100 - 1000µm Far infrared (20THz - 300GHz) Milky Way centre emissions
MM = 1 - 10mm Millimetre waveband Extra High Frequency
Long wavelength = low energy & low frequency
T13 DECIBELS
Conversion tables below. Also refer to this excellent suite of online dB calculators [C5]:
http://www.sengpielaudio.com/calculator-db-volt.htm
dB is a logarithmic representation of the ratio of power or gain: Ratio dB = log10(P1 / P0)
dBu is a logarithmic voltage ratio with a reference voltage of V0= 0.7746 volt ≡ 0dBu
dBV is a logarithmic voltage ratio with a reference voltage of V0 = 1.0000 volt ≡ 0dBV
A recording level of −10dBV means 0.3162V, which is equal to −7.78dBu
dBW means dB relative to 1W, so 0dBW = 1 watt, -3 dBW = half watt. +3dBW = 2W etc.
dBm means dB relative to 1mW, so 0dBm = 1mW, or -30dBW
T13a ELECTRICAL POWER
The following table converts from +50dBm to -150dBm into voltage and watts.
dBm V W | dBm mV mW | dBm µV pW | dBm µV fW
53 99.9 199.5 | | |
50 70.7 100.0 | 0 224 1.000 | -50 707 10pW | -100 2.24 100fW
49 63.0 79.4 | -1 199 790µW | -51 630 | -101 1.99
48 56.2 63.1 | -2 178 630 | -52 562 | -102 1.77
47 50.1 50.1 | -3 158 500 | -53 501 | -103 1.58
46 44.6 40.6 | -4 141 400 | -54 446 | -104 1.41
45 39.8 31.6 | -5 126 320 | -55 398 | -105 1.26
44 35.4 25.1 | -6 112 250 | -56 355 | -106 1.12
43 31.6 20.0 | -7 100 200 | -57 316 | -107 999nV
42 28.2 15.9 | -8 89.0 160 | -58 282 | -108 890
41 25.1 12.6 | -9 79.3 126 | -59 251 | -109 793
40 22.4 10.00 | -10 70.7 100 | -60 224 1nW | -110 707 10fW
39 19.9 7.94 | -11 63.0 | -61 199 | -111 630
38 17.8 6.31 | -12 56.2 | -62 178 | -112 562
37 15.8 5.01 | -13 50.1 | -63 158 | -113 501
36 14.1 3.98 | -14 44.6 | -64 141 | -114 446
35 12.6 3.16 | -15 39.8 | -65 126 | -115 398
34 11.2 2.51 | -16 35.4 | -66 112 | -116 354
33 10.0 2.00 | -17 31.6 | -67 99.9 | -117 316
32 8.90 1.58 | -18 28.2 | -68 89.0 | -118 282
31 7.93 1.26 | -19 25.1 | -69 79.3 | -119 251
30 7.07 1.000 | -20 22.4 10µW | -70 70.7 100pW | -120 224 1fW
29 6.30 794mW | -21 19.9 | -71 63.0 | -121 199
28 5.62 631 | -22 17.8 | -72 56.2 | -122 178
27 5.01 501 | -23 15.8 | -73 50.1 | -123 158
26 4.46 398 | -24 14.1 | -74 44.6 | -124 141
25 3.98 316 | -25 12.6 | -75 39.8 | -125 126
24 3.54 251 | -26 11.2 | -76 35.5 | -126 112
23 3.16 200 | -27 10.0 | -77 31.6 | -127 100
22 2.82 158 | -28 8.90 | -78 28.2 | -128 89
21 2.51 126 | -29 7.93 | -79 25.1 | -129 79
20 2.24 100.0 | -30 7.07 1µW | -80 22.4 10pW | -130 71 100aW
19 1.99 79.4 | -31 6.30 | -81 19.9 | -131 63
18 1.78 63.1 | -32 5.62 | -82 17.8 | -132 56
17 1.58 50.1 | -33 5.00 | -83 15.8 | -133 50
16 1.41 39.8 | -34 4.46 | -84 14.1 | -134 45
15 1.26 31.6 | -35 3.98 | -85 12.6 | -135 40
14 1.12 25.1 | -36 3.55 | -86 11.2 | -136 35
13 1.00 20.0 | -37 3.16 | -87 10.0 | -137 32
12 890mV 15.9 | -38 2.82 | -88 8.90 | -138 28
11 793 12.6 | -39 2.51 | -89 7.93 | -139 25
10 707 10.00 | -40 2.24 100nW | -90 7.07 1pW | -140 22 10aW
9 630 7.94 | -41 1.99 | -91 6.30 | -141 20
8 562 6.31 | -42 1.78 | -92 5.62 | -142 18
7 501 5.01 | -43 1.58 | -93 5.01 | -143 16
6 446 3.98 | -44 1.41 | -94 4.46 | -144 14
5 398 3.16 | -45 1.26 | -95 3.98 | -145 13
4 354 2.51 | -46 1.12 | -96 3.54 | -146 11
3 316 2.00 | -47 0.99 | -97 3.16 | -147 10
2 282 1.58 | -48 890µV | -98 2.82 | -148 9
1 251 1.26 | -49 793 | -99 2.51 | -149 8
0 224 1.00 | -50 707 10pW |-100 2.24 100fW| -150 7 1aW
T13b OPTICAL POWER
The following table shows the percentage of optical power lost and its corresponding dB value.
A theoretically perfect optical device would have no internal losses and would transmit 100% of the power, having 0dB.
dB Power Out as a % of Power In % of Power Lost
0 100.00% 0.00%
0.001 99.98% 0.02%
0.01 99.8% 0.22%
0.05 99.0% 1.0%
0.1 98.0% 2.0%
0.2 95.5% 4.5%
0.3 93.0% 7.0%
0.4 91.0% 9.0%
0.5 89.0% 11.0%
0.6 87.0% 13.0%
0.7 85.0% 15.0%
0.8 83.0% 17.0%
0.9 81.0% 19.0%
1 79.0% 21.0%
2 63.0% 37.0%
3 50.0% 50.0%
4 40.0% 60.0%
5 32.0% 68.0%
6 25.0% 75.0%
7 20.0% 80.0%
8 16.0% 84.0%
9 12.0% 88.0%
10 10.0% 90.0%
11 8.0% 92.0%
12 6.3% 93.7%
13 5.0% 95.0%
14 4.0% 96.0%
15 3.2% 96.8%
16 2.5% 97.5%
17 2.0% 98.0%
18 1.6% 98.4%
19 1.3% 98.7%
20 1.0% 99.0%
25 0.3% 99.7%
30 0.1% 99.9%
40 0.01% 99.99%
50 0.001% 99.999%
60 0.0001% 99.9999%
T14 RESISTOR VALUES FOR PI AND T TYPE 50Ω ATTENUATOR PADS
From: http://www.wenteq.com/Handbook/attenuatorpad.html
more refs here: http://www.wenteq.com/Handbook.html
All values are in Ohms.
Type: -------- π --------- -------- T --------
dB R1 R2 R3 R1 R2 R3
0.5 1737.7 2.9 1737.7 1.4 868.1 1.4
1 869.5 5.8 869.5 2.9 433.3 2.9
2 436.2 11.6 436.2 5.7 215.2 5.7
3 292.4 17.6 292.4 8.5 141.9 8.5
4 221.0 23.8 221.0 11.3 104.8 11.3
5 178.5 30.4 178.5 14.0 82.2 14.0
6 150.5 37.4 150.5 16.6 66.9 16.6
7 130.7 44.8 130.7 19.1 55.8 19.1
8 116.1 52.8 116.1 21.5 47.3 21.5
9 105.0 61.6 105.0 23.8 40.6 23.8
10 96.2 71.2 96.2 26.0 35.1 26.0
11 89.2 81.7 89.2 28.0 30.6 28.0
12 83.5 93.2 83.5 29.9 26.8 29.9
13 78.8 106.1 78.8 31.7 23.6 31.7
14 74.9 120.3 74.9 33.4 20.8 33.4
15 71.6 136.1 71.6 34.9 18.4 34.9
16 68.8 153.8 68.8 36.3 16.3 36.3
17 66.4 173.5 66.4 37.6 14.4 37.6
18 64.4 195.4 64.4 38.8 12.8 38.8
19 62.6 220.0 62.6 39.9 11.4 39.9
20 61.1 247.5 61.1 40.9 10.1 40.9
21 59.8 278.3 59.8 41.8 9.0 41.8
22 58.6 312.7 58.6 42.6 8.0 42.6
23 57.6 351.4 57.6 43.4 7.1 43.4
24 56.7 394.6 56.7 44.1 6.3 44.1
25 56.0 443.2 56.0 44.7 5.6 44.7
26 55.3 497.6 55.3 45.2 5.0 45.2
27 54.7 558.6 54.7 45.7 4.5 45.7
28 54.1 627.0 54.1 46.2 4.0 46.2
29 53.7 703.7 53.7 46.6 3.6 46.6
30 53.3 789.8 53.3 46.9 3.2 46.9
T15 MINIMUM RECOMMENDED MINERAL LIMIT FOR GOOD QUALITY WATER
Derived from [G30]: The Dow Chemical Company
Calcium < 50ppm
Magnesium < 50ppm
Chloride < 25ppm
Sulfate < 25ppm
Total Hardness < 100ppm (5 grains)
T16 ELECTRONIC COLOUR CODES FOR COMPONENTS AND WIRING
Many electronic components and wiring are identified by a multi-band colour code:
The most common selection of colours used in this code represents
numbers 0 to 9, as shown on the right.
Throughout this website I often refer to wiring using a two-letter abbreviation derived from the first and last letters of these colours (right, leftmost column).
Wire insulation often uses a dual implementation of this colour code, by combining a background colour with a tracer.
For example, I describe a white wire with a thin strip of orange running along it as WE/OE.
In turn, this wire might have been identified on its original
wiring schedule as wire 93.
I also use these letters to identify the yellow (YW: channel 1) and blue (BE: channel 2) traces on my Rigol DS1102CD oscilloscope.
BK
BN
RD
OE
YW
GN
BE
VT
GY
WE
T17 THERMAL COEFFICIENTS OF SELECTED MATERIALS
References:
1 https://www.engineeringtoolbox.com/thermal-conductivity-d_429.html
2 https://www.engineeringtoolbox.com/thermal-conductivity-metals-d_858.html
3 https://www.nde-ed.org/Physics/Materials/Physical_Chemical/SpecificGravity.xhtml
4 https://customthermoelectric.com/tech-info/te-encyclopedia/thermal-interfaces-tims.html
5 https://www.graphene-info.com/graphene-thermal
6 https://www.sheenthermal.com/su010-1-graphene-copper-tape.html
7 https://precision-ceramics.com/materials/properties/thermal-conductivity/
8 https://www.electronics-cooling.com/wp-content/uploads/2017/11/Thermal-Interface-Materials-Brochure-99342-A4-R0.pdf
9 https://www.tecmanuk.com/advanced-material/products/thermal-management-materials/thermal-electrical-management-foils/26-cu090-copper-thermally-conductive-foil-tape/
Definition of W/m K:
https://ctherm.com/resources/newsroom/blog/units-for-thermal-conductivity/
Material Thermal Conductivity: W/m, K Ref Notes
Air at 25°C 0.026 1
Aluminium at 0°C (for comparison 127°C) 236 2
Aluminium at 127°C 240 2
Brass 109 3
Carbon 1.7 1
Ceramic 93-230 7
Copper at 127°C 302 3
Copper thermal tape 0.07mm + adhesive 250 9
Diamond 1000 1
Fluorocarbon liquid 0.06 [11: Cooling Loop]
Gallium, liquid 29 3 REACTS WITH ALL METALS BUT TUNGSTEN, TANTALUM
Glass, ordinary 0.8 3
Gold at 127°C 312 2
Graphene 400 5
Graphene copper tape 400 6
Graphite 168 1
Indium 86 8
Iron at 127°C 69.4 2
Lead at 127°C 33.8 3
oil, synthetic Poly-alpha-olefin 0.14 [11: Cooling Loop]
Silver at 127°C 420 2
Steel 0.5% C at 20°C 54 2
Thermal adhesive, ceramic filled 1.5 4
Thermal adhesive, silver filled 8 4
Thermal grease 0.5-7.5 4
Toner (photocopier), ground polyester 0.05 1
Water 0.6 1
New text box